ParameterTransformer#
- class pyvbmc.parameter_transformer.ParameterTransformer(D: int, lb_orig: ndarray = None, ub_orig: ndarray = None, plb_orig: ndarray = None, pub_orig: ndarray = None, scale: ndarray = None, rotation_matrix: ndarray = None, transform_type='logit')[source]#
- A class used to enable transforming of variables from unconstrained to constrained space and vice versa. - Parameters:
- Dint
- The dimension of the space. 
- lb_orignp.ndarray, optional
- The lower bounds of the space. - lb_origand- ub_origdefine a set of strict lower and upper bounds for each parameter, given in the original space. By default None.
- ub_orignp.ndarray, optional
- The upper bounds of the space. - lb_origand- ub_origdefine a set of strict lower and upper bounds for each parameter, given in the original space. By default None.
- plb_orignp.ndarray, optional
- The plausible lower bounds such that - lb_orig < plb_orig < pub_orig < ub_orig.- plb_origand- pub_origrepresent a “plausible” range for each parameter, given in the original space. By default None.
- pub_orignp.ndarray, optional
- The plausible upper bounds such that - lb_orig < plb_orig < pub_orig < ub_orig.- plb_origand- pub_origrepresent a “plausible” range for each parameter, given in the original space. By default None.
- bounded_transform_typestr, optional
- A string indicating the type of transform for bounded variables: one of [“logit”, (“norminv” || “probit”), “student4”]. Default “logit”. 
 
 - __call__(x: ndarray)[source]#
- Performs direct transform of original variables - xinto unconstrained variables- u.- Parameters:
- xnp.ndarray
- A N x D array, where N is the number of input data and D is the number of dimensions 
 
- Returns:
- unp.ndarray
- The variables transformed to unconstrained variables. 
 
 
 - inverse(u: ndarray)[source]#
- Performs inverse transform of unconstrained variables - uinto variables- xin the original space- Parameters:
- unp.ndarray
- The unconstrained variables that will be transformed. 
 
- Returns:
- xnp.ndarray
- The original variables which result of the transformation. 
 
 
 - log_abs_det_jacobian(u: ndarray)[source]#
- log_abs_det_jacobian(u)returns the log absolute value of the determinant of the Jacobian of the parameter transformation evaluated at- u, that is :math: log |D du(g^-1(u))|.- Parameters:
- unp.ndarray
- The points where the log determinant of the Jacobian should be evaluated (in transformed space). 
 
- Returns:
- pnp.ndarray
- The log absolute determinant of the Jacobian.